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Abstract

To navigate reliably in indoor environments, a mobile robot
must know where it is. Thus, reliable position estimation is
a key problem in mobile robotics. We believe that prob-
abilistic approaches are among the most promising can-
didates to providing a comprehensive and real-time solu-
tion to the robot localization problem. However, current
methods still face considerable hurdles. In particular, the
problems encountered are closely related to the type of
representation used to represent probability densities over
the robot’s state space. Recent work on Bayesian filter-
ing with particle-based density representations opens up a
new approach for mobile robot localization, based on these
principles. In this paper we introduce theMonteCarlo
Localization method, where we represent the probability
density involved by maintaining a set ofsamplesthat are
randomly drawn from it. By using a sampling-based repre-
sentation we obtain a localization method that can repre-
sent arbitrary distributions. We show experimentally that
the resulting method is able to efficiently localize a mo-
bile robot without knowledge of its starting location. It is
faster, more accurate and less memory-intensive than ear-
lier grid-based methods.

1 Introduction

Two key problems in mobile robotics are global position
estimation and local position tracking. We define global
position estimation as the ability to determine the robot’s
position in an a priori or previously learned map, given no
other information than that the robot is somewhere on the
map. If no a priori map is available, many applications
allow for such a map to be built over time as the robot ex-
plores its environment. Once a robot has been localized
in the map, local tracking is the problem of keeping track
of that position over time. Both these capabilities are nec-
essary to enable a robot to execute useful tasks, such as
office delivery or providing tours to museum visitors. By
knowing its global position, the robot can make use of the
existing maps, which allows it to plan and navigate reli-
ably in complex environments. Accurate local tracking on
the other hand, is useful for efficient navigation and local

manipulation tasks. Both these sub-problems are of funda-
mental importance to building truly autonomous robots.

We believe that probabilistic approaches are among
the most promising candidates to providing a comprehen-
sive and real-time solution to the robot localization prob-
lem, but current methods still face considerable hurdles.
Kalman-filter based techniques have proven to be robust
and accurate for keeping track of the robot’s position.
However, a Kalman filter cannot represent ambiguities and
lacks the ability to globally (re-)localize the robot in the
case of localization failures. Although the Kalman filter
can be amended in various ways to cope with some of
these difficulties, recent approaches [1, 2, 3, 4, 5] have used
richer schemes to represent uncertainty, moving away from
the restricted Gaussian density assumption inherent in the
Kalman filter. In previous work [5] we introduced the grid-
based Markov localization approach which can represent
arbitrarily complex probabilitydensities at fine resolutions.
However, the computational burden and memory require-
ments of this approach are considerable. In addition, the
grid-size and thereby also the precision at which it can rep-
resent the state has to be fixed beforehand.

In this paper we present theMonteCarlo Localization
method (which we will denote as the MCL-method) where
we take a different approach to representing uncertainty:
instead of describing the probability density function itself,
we represent it by maintaining a set ofsamplesthat are ran-
domly drawn from it. To update this density representation
over time, we make use of Monte Carlo methods that were
invented in the seventies [6], and recently rediscovered in-
dependently in the target-tracking [7], statistical [8] and
computer vision literature [9, 10].

By using a sampling-based representation we obtain a
localization method that has several key advantages with
respect to earlier work:

1. In contrast to Kalman filtering based techniques, it is
able to represent multi-modal distributions and thus
canglobally localize a robot.

2. It drastically reduces the amount of memory required
compared to grid-based Markov localization, and it



can integrate measurements at a considerably higher
frequency.

3. It is moreaccuratethan Markov localization with a
fixed cell size, as the state represented in the samples
is not discretized.

4. It is easy to implement.

The remainder of this paper is organized as follows: in
the next section (Section 2) we introduce the problem of
localization as an instance of the Bayesian filtering prob-
lem. Then, in Section 3, we discuss existing approaches to
position estimation, focusing on the type of density repre-
sentation that is used. In Section 4, we describe the Monte
Carlo localization method in detail. Finally, Section 5 con-
tains experimental results illustrating the various properties
of the MCL-method.

2 Robot Localization

In robot localization, we are interested in estimating the
state of the robot at the current time-stepk, given knowl-
edge about the initial state and all measurementsZk =
fzk; i = 1::kg up to the current time. Typically, we will
work with a three-dimensional state vectorx = [x; y; �]T ,
i.e. the position and orientation of the robot. This estima-
tion problem is an instance of the Bayesian filtering prob-
lem, where we are interested in constructing the posterior
densityp(xkjZk) of the current state conditioned on all
measurements. In the Bayesian approach, this probability
density function (PDF) is taken to represent all the knowl-
edge we possess about the statexk, and from it we can
estimate the current position. Often used estimators are the
mode (the maximum a posteriori or MAP estimate) or the
mean, when the density is unimodal. However, particu-
larly during the global localization phase, this density will
be multi-modal and calculating a single position estimate
is not appropriate.

Summarizing, to localize the robot we need to recur-
sively compute the densityp(xkjZk) at each time-step.
This is done in two phases:

Prediction PhaseIn the first phase we use amotion
model to predict the current position of the robot in the
form of a predictive PDFp(xkjZk�1), taking only mo-
tion into account. We assume that the current statexk is
only dependent on the previous statexk�1 (Markov) and
a known control inputuk�1, and that the motion model is
specified as a conditional densityp(xkjxk�1;uk�1). The
predictive density overxk is then obtained by integration:

p(xkjZk�1) =

Z
p(xkjxk�1;uk�1) p(xk�1jZk�1) dxk�1

(1)

Update PhaseIn the second phase we use ameasure-
ment modelto incorporate information from the sensors
to obtain the posterior PDFp(xkjZk). We assume that
the measurementzk is conditionally independent of earlier
measurementsZk�1 givenxk, and that the measurement
model is given in terms of a likelihoodp(zkjxk). This
term expresses the likelihood that the robot is at location
xk given thatzk was observed. The posterior density over
xk is obtained using Bayes theorem:

p(xkjZ
k) =

p(zkjxk)p(xkjZk�1)

p(zkjZ
k�1)

(2)

After the update phase, the process is repeated recur-
sively. At timet0 the knowledge about the initial statex0
is assumed to be available in the form of a densityp(x0).
In the case of global localization, this density might be a
uniform density over all allowable positions. In tracking
work, the initial position is often given as the mean and co-
variance of a Gaussian centered aroundx0. In our work,
as in [11], the transition from global localization to track-
ing is automatic and seamless, and the PDF evolves from
spanning the whole state space to a well-localized peak.

3 Existing Approaches:
A Tale of Density Representations

The solution to the robot localization problem is ob-
tained by recursively solving the two equations (1) and (2).
Depending on how one chooses to represent the density
p(xkjZk), one obtains various algorithms with vastly dif-
ferent properties:

The Kalman filter If both the motion and the measure-
ment model can be described using a Gaussian density,
and the initial state is also specified as a Gaussian, then
the densityp(xkjZk) will remain Gaussian at all times. In
this case, equations (1) and (2) can be evaluated in closed
form, yielding the classical Kalman filter [12]. Kalman-
filter based techniques [13, 14, 15] have proven to be ro-
bust and accurate for keeping track of the robot’s position.
Because of its concise representation (the mean and co-
variance matrix suffice to describe the entire density) it
is also a particularly efficient algorithm. However, in its
pure form, the Kalman filter does not correctly handle non-
linear or non-Gaussian motion and measurement models, is
unable to recover from tracking failures, and can not deal
with multi-modal densities as encountered during global
localization. Whereas non-linearities, tracking failure and
even multi-modal densities can beaccomodated usingnon-
optimal extensions of the Kalman filter, most of these dif-
ficulties stem from the the restricted Gaussian density as-
sumption inherent in the Kalman filter.



Topological Markov Localization To overcome these
disadvantages, different approaches have used increasingly
richer schemes to represent uncertainty. These different
methods can be roughly distinguished by the type of dis-
cretization used for the representation of the state space.
In [1, 2, 3, 4], Markov localization is used for landmark-
based corridor navigation and the state space is organized
according to the topological structure of the environment.

Grid-based Markov Localization To deal with multi-
modal and non-Gaussian densities at a fine resolution (as
opposed to the coarser discretization in the above meth-
ods), one can perform numerical integration over a grid of
points. This involves discretizing the interesting part of
the state space, and use it as the basis for an approxima-
tion of the densityp(xkjZk), e.g. by a piece-wise con-
stant function [16]. This idea forms the basis of our previ-
ously introduced grid-based Markov localization approach
(see [5, 11]). Methods that use this type of representation
are powerful, but suffer from the disadvantages of compu-
tational overhead anda priori commitment to the size of
the state space. In addition, the resolution and thereby also
the precision at which they can represent the state has to be
fixed beforehand. The computational requirements have
an effect on accuracy as well, as not all measurements can
be processed in real-time, and valuable information about
the state is thereby discarded. Recent work [11] has begun
to address some of these problems, using octrees to ob-
tain a variable resolution representation of the state space.
This has the advantage of concentrating the computation
and memory usage where needed, and addresses to some
extent the limitation of fixed accuracy.

Sampling-based MethodsFinally, one can represent
the density by a set of samples that are randomly drawn
from it. This is the representation we will use, and it forms
the topic of the next section.

4 Monte Carlo Localization

In sampling-based methods one represents the density
p(xkjZk) by a set of N random samples orparticlesSk =
fsik; i = 1::Ng drawn from it. We are able to do this be-
cause of the essential duality between the samples and the
density from which they are generated [17]. From the sam-
ples we can always approximately reconstruct the density,
e.g. using a histogram or a kernel based density estimation
technique.

The goal is then to recursively compute at each time-
stepk the set of samplesSk that is drawn fromp(xkjZk).
A particularly elegant algorithm to accomplish this has re-
cently been suggested independently by various authors. It
is known alternatively as the bootstrap filter [7], the Monte-
Carlo filter [8] or the Condensation algorithm [9, 10].
These methods are generically known asparticle filters,

and an overview and discussion of their properties can be
found in [18].

In analogy with the formal filtering problem outlined in
Section 2, the algorithm proceeds in two phases:

Prediction PhaseIn the first phase we start from the set
of particlesSk�1 computed in the previous iteration, and
apply the motion model to each particlesik�1 by sampling
from the densityp(xkjsik�1;uk�1):

(i) for each particlesik�1:
draw one samples0ik from p(xkjsik�1;uk�1)

In doing so a new setS0k is obtained that approximates
a random sample from the predictive densityp(xkjZk�1).
The prime inS0k indicates that we have not yet incorpo-
rated any sensor measurement at timek.

Update PhaseIn the second phase we take into account
the measurementzk, and weight each of the samples in
S0k by the weightmi

k = p(zkjs0
i
k), i.e. the likelihood of

s0
i
k givenzk. We then obtainSk by resampling from this

weightedset:

(ii) for j=1..N:
draw oneSk samplesjk from fs0

i
k;m

i
kg

The resampling selects with higher probability sampless0
i
k

that have a high likelihood associated with them, and in do-
ing so a new setSk is obtained that approximates a random
sample fromp(xkjZk). An algorithm to perform this re-
sampling process efficiently in O(N) time is given in [19].

After the update phase, the steps (i) and (ii) are repeated
recursively. To initialize the filter, we start at timek = 0
with a random sampleS0 = fsi

0
g from the priorp(x0).

4.1 A Graphical Example

One iteration of the algorithm is illustrated in Figure 1.
In the figure each panel in the top row shows the exact den-
sity, whereas the panel below shows the particle-based rep-
resentation of that density. In panel A, we start out with a
cloud of particlesSk�1 representing our uncertainty about
the robot position. In the example, the robot is fairly local-
ized, but its orientation is unknown. Panel B shows what
happens to our belief state when we are told the robot has
moved exactly one meter since the last time-step: we now
know the robot to be somewhere on a circle of 1 meter
radius around the previous location. Panel C shows what
happens when we observe a landmark, half a meter away,
somewhere in the top-right corner: the top panel shows the
likelihoodp(zkjxk), and the bottom panel illustrates how
each samples0ik is weighted according to this likelihood.
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Fig. 1: The probability densities and particle sets for one
iteration of the algorithm. See text for detail.

Finally, panel D shows the effect of resampling from this
weighted set, and this forms the starting point for the next
iteration.

4.2 Theoretical Justification

Good explanations of the mechanism underlying the el-
egant and simple algorithm sketched above are given in
[19, 20]. We largely follow their exposition below:

Prediction PhaseTo draw an approximately random
sample from the exact predictive PDFp(xkjZk�1), we use
the motion model and the set of particlesSk�1 to construct
theempirical predictive density[20]:

p̂(xkjZk�1) =
NX
i=1

p(xkjsik�1;uk�1) (3)

Equation (3) describes a mixture density approximation to
p(xkjZk�1), consisting of one equally weighted mixture
componentp(xkjsik�1;uk�1) per samplesik�1. To sample
from this mixture density, we usestratified samplingand
draw exactly one samples0ik from each of the N mixture
components to obtainS0k.

Update PhaseIn the second phase we would like to
use the measurement model to obtain a sampleS0k from
the posteriorp(xkjZk). Instead we will use Eq. (3) and
sample from theempirical posterior density:

p̂(xkjZk) / p(zkjxk)p̂(xkjZk�1) (4)

This is accomplished using a technique from statistics
called importance sampling. It is used to obtain a sample
from a difficult to sample densityp(x) by instead sampling
from an easier densityf(x). In a corrective action, each
sample is then re-weighted by attaching theimportance

weightw = p(x)=f(x) to it. In the context of the parti-
cle filter, we would like to sample fromp(x) = p̂(xkjZ

k),
and we use as importance functionf(x) = p̂(xkjZ

k�1),
as we have already obtained a random sampleS0k from it
in the prediction step. We then reweight each sample by:

mi
k =

g(x)

f(x)
=

p(zkjxk)p̂(xkjZ
k�1)

p̂(xkjZk�1)
= p(zkjxk)

The subsequent resampling is needed to convert the set of
weighted or non-random samples back into a set of equally
weighted samplesSk = fsikg.

The entire procedure of sampling, reweighting and sub-
sequently resampling to sample from the posterior is called
Sampling/Importance Resampling(SIR), and is discussed
in more depth in [17].

5 Experimental Results

Fig. 2: The robots RHINO (left) and
MINERVA (right) used for the experiments.

The Monte Carlo localization technique has been tested
extensively in our office environment using different
robotic platforms. In all these applications our approach
has shown to be both efficient and robust, running com-
fortably in real-time. In order to test our technique un-
der more challenging circumstances, the experiments de-
scribed here are based on data recorded from RHINO, an
RWI B21 robot, and MINERVA, an RWI B18 robot (see
Figure 2). While the data collected by RHINO was taken
in a typical office environment, MINERVA’s datasets con-
sist of logs recorded during a deployment of the robot as a
museum tour-guide in the Smithsonian’s National Museum
of American History. Although the data was collected at an
earlier time the time-stamps in the logs were used to recre-
ate the real-time datastream coming from the sensors, so
that the results do not differ from results obtained on the
real robots.
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Fig. 3: Global localization:
Initialization.

Fig. 4: Ambiguity due to symmetry. Fig. 5: Achieved localization.

5.1 Global Localization

One of the key advantages of the MCL-method over
Kalman-filter based approaches is its ability to represent
multi-modal probability distributions. This ability is a
precondition for localizing a mobile robot from scratch,
i.e. without knowledge of its starting location. The global
localization capability of the MCL-method is illustrated in
Figs. 3 to 5. In this particular experiment, we used the
sonar readings recorded from RHINO in a department of
the University of Bonn, Germany. In the first iteration, the
algorithm is initialized by drawing 20,000 samples from a
uniform probability density save where there are known to
be (static) obstacles. The robot started in the left corner
of the corridor and the distribution of the samples after the
first scan of sonar measurements is observed, is shown in
Figure 3. As the robot enters the upper left room (see Fig-
ure 4), the samples are already concentrated around two
positions. One is the true location of the robot and the
other occurs due to the symmetry of the corridor (imagine
the robot moving into the lower right room). In addition,
a few scattered samples survive here and there. It should
be noted that in this early stage of localization, the abil-
ity to represent ambiguous probability distributions is vital
for successful position estimation. Finally, in the last fig-
ure (Figure 5), the robot has been able to uniquely deter-
mine its position because theupper left room looks (to the
sonars) different from the symmetrically opposed room.

5.2 Accuracy of Position Tracking

To compare the accuracy of the Monte Carlo method
with our earlier grid-based approach, we again used data
recorded from RHINO. Figure 6 shows the test environ-
ment with the path taken by the robot. The figure also de-
picts 22 reference points for which we determined the ac-
curate positions of the robot on its path (this data has also
been used for accuracy tests in [11, 21]). We conducted
four evaluations of the laser and the sonar measurements

6

11

15

4

19
12

22
10

21

13

16

18

17

14

8

2

1

5

7

9
3

20

Fig. 6: Path of the robot and reference positions

with small corruptions on the odometry data to get statisti-
cally significant results. The average distance between the
estimated positions and the reference positions using the
grid-based localization approach is shown in Figure 7, as a
function of cell size (the error-bars provide 95% confidence
intervals). As is to be expected, the error increases with in-
creasing cell size (see [11] for a detailed discussion).
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Fig. 7: Accuracy of grid-based Markov localization using
different spatial resolutions.

We also ran our MCL-method on the recordings from



the same run, while varying the number of samples used
to represent the density. The result is shown in Figure 8.
It can be seen that the accuracy of our MCL-method can
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Fig. 8: Accuracy of MCL-method for different numbers of
samples (log scale).

only be reached by the grid-based localization when using
a cell size of 4cm. Another salient property of this graph
is the trade-off between increased representational power
and computational overhead. Initially, theaccuracy of the
method increases with the number of samples (shown on
a log scale for clarity). However, as increased process-
ing time per iteration causes available measurements to be
discarded, less information is integrated into the posterior
densities and theaccuracy goes down.

5.3 National Museum of American History

The MCL-method is also able to track the position of a
robot for long periods of time, even when using inaccu-
rate occupancy grid maps and when the robot is moving
at high speeds. In this experiment, we used recorded laser
data from the robotic tour-guideMINERVA, as it was mov-
ing with speeds up to 1.6 m/sec through the Smithsonian’s
National Museum of American History. At the time of this
run there were no visitors in the museum, and the robot was
remotely controlled by users connected through the world
wide web1.

Tracking performance is illustrated in Figure 9, which
shows the occupancy grid map of the museum used for lo-
calization along with the trajectory of the robot (the area
shown is about 40 by 40 meters). This run lasted for 75
minutes with the robot traveling over 2200 meters, during
which the algorithm never once lost track. For this particu-
lar tracking experiment, we used 5000 samples. In general,
far fewer samples are needed for position tracking than for
global localization, and an issue for future research is to
adapt the number of samples appropriately.

1See alsohttp://www.cs.cmu.edu/˜minerva

Fig. 9: A laser-based map of the Smithsonian museum
with a succesful track of over 2 km.

Global localization in this environment behaved equally
impressive: using MCL, the robot’s location was uniquely
determined in less than 10 seconds. This level of perfor-
mance can only be obtained with the grid-based Markov
localization when using very coarse grids, which are un-
suitable for tracking purposes. To gain the same flexibil-
ity as the MCL-method, a variable resolution approach is
needed, as proposed in [11] (see also discussion below).

6 Conclusion and Future Work

In this work we introduced a novel approach to mo-
bile robot position estimation, the Monte Carlo localiza-
tion method. As in our previous grid-based Markov local-
ization work, we represent probability densities over the
entire state space. Instead of directly approximating this
density function we represent it by a set of samples ran-
domly drawn from it. Recent research on propagating and
maintaining this representation over time as new measure-
ments arrive, made this technique applicable to the prob-
lem of mobile robot localization.

By using Monte Carlo type methods, we have combined
the advantages of grid-based Markov localization with the
efficiency and accuracy of Kalman filter based techniques.
As with grid-based methods, we are able to represent ar-
bitrary probability densities over the robot’s state space.
Therefore, the MCL-method is able to deal with ambigui-
ties and thus canglobally localize a robot. By concentrat-
ing the computational resources (samples) on the relevant
parts of the state space, our method canefficientlyandac-
curatelyestimate the position of the robot.

Compared to our previous grid-based method, this ap-
proach has significantly reduced memory requirements
while at the same time incorporating sensor measurements
at a considerably higher frequency. Grid-based Markov lo-



calization requires dedicated techniques for achieving the
same efficiency or increasing the accuracy. Recent work,
for example [11], uses octrees to reduce the space and time
requirements of Markov localization. However, this tech-
nique has a significant overhead (in space, time, and pro-
gramming complexity) based on the nature of the underly-
ing data structures.

Even though we obtained promising results with our
technique, there are still warrants for future work. One
potential problem with the specific algorithm we used is
that of sample impoverishment: in the resampling step,
samplessik with high weight will be selected multiple
times, resulting in a loss of ’diversity’ [18]. Several im-
provements to the basic algorithm have recently been sug-
gested [19, 20, 18], and it makes sense to see whether they
would also improve localization performance.

In future work, the reduced memory requirements of the
algorithm will allow us to extend the robot’s state with ve-
locity information, possibly increasing the tracking perfor-
mance. One can even extend the state with discrete vari-
ables indicating the mode of operation of the robot (e.g.
cruising, avoiding people, standing still), enabling one to
select a different motion model for each mode. This idea
has been explored with great success in the visual track-
ing literature [22], and it might further improve localiza-
tion performance. In addition, this would also allow us to
generate symbolic descriptions of the robot’s behavior.
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